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Scenario One: The Drunken Coin Toss
One friend announces to the group that he spent lockdown teaching himself how to predict the future.

He says that he can predict everyone’s future, and that he can see the outcome of any event before it
happens.

The Test: the group challenges him to correctly predict the outcome of a fair coin toss  times in a row.

Scenario Two: The Wine Critic
A second friend says that he spent the lockdown “learning how to be a wine critic”.

It’s possible that this is true, but it’s also possible that he spent the year drinking cheap wine…

The Test: the group challenges him to correctly identifying whether an unlabelled glass of wine comes
from a vineyard in France or Spain  times in a row.

Scenario Three: The Classical Pianist
A third friend says that she spent the lockdown re-learning how to play classical piano.

She says that she had learned to play classical piano as a child, and the long time in lockdown gave her an
opportunity to renew her passion for playing.

The Test: the group challenges her correctly identify whether a piece of classical music is by Beethoven or
Mozart  times in a row.
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Sceptic or Believer?
Each of these scenarios present the person with a challenge.

Without focussing on the statistics (just yet), come up with a figure that demonstrates how likely you think
the person is to succeed their challenge.

What probability do you think that the person has of succeeding their challenge? Remember that the
challenges all state that they must guess correctly all  times. If they get any of the  guesses wrong,
then they fail their challenge.

What does Angus think?
I don’t believe that the friend can see the future. At all. .
I think it’s unlikely that the friend studied wine all lockdown, but I’m not
completely closed off to the possibility… .
I think that getting back into piano sounds like something totally
reasonable, especially if you had learned it originally as a child, so
there’s a good chance she will win the challenge. 

What happens in the challenges?
Scenario One: The Drunken Coin Toss
First up is your good friend the drunken fortune teller.

You take a coin from your own pocket, which you know is fair.

You toss the coin  times, and each time your friend guesses the outcome while the coin is in the air.

He guesses correctly all  times

What happens in the challenges?
Scenario Two: The Wine Critic
The barman prepares  glasses containing wine from either France or Spain.

He numbers the glasses  to , and gives them to you to administer the challenge.

You give the glasses of wine one-by-one to your friend, and record whether he thinks the wine comes from
France or Spain. You take his responses back to the bartender.

He has guessed correctly all  times

What happens in the challenges?
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Scenario Three: The Classical Pianist
The group goes through their music libraries and selects  songs that are written by either Mozart or
Beethoven.

They make the test as difficult as possible by purposely avoiding any songs that are widely popular.

They play the  songs one at a time for your friend.

She guesses correctly all  times

What do you think?
In all three challenges, our friends are victorious!

How do these observations align with what you have in your graphs? Or more importantly:

How does the outcomes of the challenges change your opinions?

 means that they’re lying, and that they cannot:
see the future
tell the difference between wines
tell the difference between the classical pieces

 means that they’re telling the truth, and that they can:
see the future
tell the difference between wines
tell the difference between the classical pieces

Reminder of Set Notation
A set  is defined as a collection of items, grouped by curly brackets:

The size (or cardinality) of a set is given by .
A set with cardinality of 0 is the empty set, which has the symbol .
The data that exist outside of a particular set, called the “compliment” is
given as:
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Events and Outcomes
Given an experiment, there can be a set of possible results.

These results are known as outcomes.

Every run of an experiment will produce one, and only one, outcome.

Sample Space
When we toss a coin, there are two possible outcomes: Heads (H) or Tails (T).

This is therefore the total set of available outcomes, known as the sample space ( ).

What about if we were to toss our coin twice?

Now: consider a game which only ends when you throw a head and then a tail. What is the sample space
of outcomes of this game?

Probability derives from Outcomes
The available outcomes of our single coin-toss experiment are:

Ω

Ω = {H, T}

Ω = {H, T}



We were to perform this experiment  times (i.e. run  trials), and record the number of occurrences of
each outcome .

We can then observe the relative frequency of each outcome:

Coin Toss Simulation
We can perform this experiment using a simulated coin toss:

Probability derives from Outcomes
If we plot this as a running “Relative Frequency of Heads”:

As the  becomes large,  tends towards .

N N
A

=fA
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N

N P(A) 50%

P(A) = .#(A)

Our First Probability Laws
This gives us some information about probability already.

Because probability derives from relative frequency of observations:

When we look at the probability of all possible outcomes (i.e. ):

 is the sample space of all outcomes, so the sum of all relative
frequencies must be : .

Events
An event is defined as a set of outcomes.

Take our example of the prime number roll on a dice:

The probability of observing event  is the sum of the probabilities of observing each of the independent
outcomes within the event:

If the event contains all possible outcomes (that is, the event space is the sample space: ), then we
recover our earlier summation

Given the above two properties, observing any event that is not , which is denoted as the compliment of 
:

Events
Given the complementarity rule, if the event space contains no outcomes (that is, it is the empty set: 

), then the probability of the event is 0:

P(A) = .lim
N→∞

#(A)
N

0 ≤ P(A) ≤ 1

∈ ΩAi

Ω
1 P( ) = 1∑ ∈ΩAi

Ai

 = {2, 3, 5}



P() = P( )∑
∈Ai

Ai

 = Ω

P(Ω) = 1.

A
A

P( ) = 1 − P(A)Ac

 = = ∅Ωc

P(∅) = 1 − P(Ω)
= 0.



So, what is the probability of observing a prime number when we roll a fair die:

Rolling two Dice
Lets complicate the sample space by looking at the outcomes of rolling two dice at the same time, and
summing together the results.

Each die has the outcomes . The sample space of the two-dice roll is the set of all
possible ordered combinations or permutations of two draws from these values.

We can construct this sample space by hand:

Rolling two Dice
With two fair die, the probability of observing each of these outcomes is equal:

However, we wanted to calculate the sum of the dice. The summation doesn’t distinguish between 
or , it only matters that we have the event .

What is the probability, then, of all distinct events in our two-dice roll?

Joint Probability
The joint probability of two outcomes is the probability of observing both outcomes at the same time.
With our two dice, the joint probability of any two numbers was:

P( ∈ {2, 3, 5})

∴ P()

= P( )∑
∈Ai

Ai

= P(2) + P(3) + P(5)
= + +1
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= 0.5

A = {1, 2, 3, 4, 5, 6}

Ω = {1 + 1, 1 + 2, 1 + 3, 1 + 4, 1 + 5, 1 + 6,
2 + 1, 2 + 2, 2 + 3, 2 + 4, 2 + 5, 2 + 6,
⋮
6 + 1, 6 + 2, 6 + 3, 6 + 4, 6 + 5, 6 + 6}

P( )Ai = 1
|Ω|

= 1
36

1 + 4
4 + 1 = 5i

P(A ∩ B) = P(A) × P(B)

Observations are independent if and only if

.

Independence and Non-independence
Independent events are extremely important in statistics, especially in the context of random variables
(which we will discuss later in this section).

However non-independent events are also extremely important.

Independence and Non-independence

Independence and Non-independence
Here our draws are independent:

P(A ∩ B) = P(A) × P(B)



However, how does this change if we choose not to replace the first ball that we draw?

Independence and Non-independence

Conditional Probability
Given a sample space  of outcomes and a collection of events, the probability of B conditioned on A is
the probability that B occurs given that A has definitely occurred

With our urn example, for our second draw, what now want to know is the probability of observing an 
given that we just observed a .

P(2 ∩ 8) = P(2) × P(8)
= ×1

8
1
8

= 1
64

Ω

P(B|A)

8
2

Said differently, the second draw computes the probability of observing an  conditioned upon our prior
observation of a .

Conditional Probability
In this example we can compute the conditional probability logically:

Conditional Probability II
Suppose we draw two balls from our urn, with replacement. We want to calculate the probability of
drawing two balls with a combined value greater than or equal to 10.

The “win” event space is therefore:

8
2

P(2 ∩ 8) = P(2) × P(8|2)
= ×1

8
1
7

= .1
56



Conditional Probability II
There are 64 possible ways of drawing  balls from a bag of  with replacement, which means that we
have a  chance of winning this game.

However, suppose now that we know that our first draw is an . How does this information influence our
chance of winning?

If we first observe an , there are  subsequent draws which will earn us a victory:

Therefore the probability of winning given our first draw is an  jumps to .

Conditional Probability II
What about if we know that our first draw is a ?

And so our probability of winning is a lowly .

So event probabilities can be wildly influenced by different conditionalisation.

Computing Conditional Probability
We now want to derive an expression for the conditional probability .

We can start with our venn diagram again:

 = {8 + 2, 8 + 3, 8 + 4, 8 + 5, 8 + 6, 8 + 7, 8 + 8,
7 + 3, 7 + 4, 7 + 5, 7 + 6, 7 + 7, 7 + 8,
6 + 4, 6 + 5, 6 + 6, 6 + 7, 6 + 8,
5 + 5, 5 + 6, 5 + 7, 5 + 8,
4 + 6, 4 + 7, 4 + 8,
3 + 7, 3 + 8,
2 + 8}.

2 8
7/16
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|8 = {8 + 2, 8 + 3, 8 + 4, 8 + 5, 8 + 6, 8 + 7, 8 + 8}

8 P(|8) = 7/8

2

|2 = {2 + 8}

P(|2) = 1/8

P(B|A)

Our conditionalisation means that we know our probability must reside within . We want to know 
: the probability that it lies within both  and . This is the intersection .

Computing Conditional Probability
If the outcome lies in , then it must fall within either  or . Therefore:

Additionally, we can use our link between probability and relative frequency to our advantage.

If some outcome  is  times more likely than , then .

But this must be true regardless of whether  is observed first or not (the order of observation doesn’t
change the relative positions of items in our venn diagram). So . This means:

To determine the coefficient of proportionality ( ) we can use the above expressions and find:

The intersection and the conditional probability are therefore very closely related.

The intersection probability has range , while the conditional probability has the
range .

Computing Conditional Probability

A
P(B|A) A B B ∩ A

A A ∩ B A ∩ Bc

P(B|A) + P( |A) = 1Bc

C ∩ A k B ∩ A P(C ∩ A) = kP(B ∩ A)
A

P(C|A) = kP(B|A)

P(B|A) ∝ P(B ∩ A)

c

P(B|A) = .P(B ∩ A)
P(A)

0 ≤ P(B ∩ A) ≤ P(A)
0 ≤ P(B|A) ≤ 1



This can be a guide as to how to think about the intersection (i.e. ) and the conditional
probability.

The former provides a probability in the absence of any additional information/observations.

The conditional probability, however, provides probability based on the knowledge that we have already
made some observation.

Conditional Probability & Independence
Lastly, there is one additional (very important!) observation we can make. Given that the intersection of two
probabilities is unchanged under ordering: , this means that:

This turns out to be an extremely valuable relationship known as Bayes Rule.

Modelling conditionality & independence:
Criminal Trial
You are on the jury of a criminal trial.

A criminal was identified by matching a sample of DNA (from a crimescene) to a database of many
thousands of people.

The probability of incorrectly matching DNA to a random person is , and such incorrect/chance
matches are independent.

There are  people in the DNA database. The police find a match, and take the matching person to
trial.

Modelling conditionality & independence:
Criminal Trial
The prosecution stands before the jury and says they have damning evidence.

The probability of the DNA match being wrong is , and so there is a  chance that this
person is guilty.

What conditionality is important?
The prosecutor has quoted the following conditional probability:

P(B ∩ A)

P(B ∩ A) = P(A ∩ B)

P(B|A)

P(A|B)

∴ P(B|A)

= P(B ∩ A)
P(A)

= P(A ∩ B)
P(B)

= P(A|B)P(B)
P(A)

0.01%

20 000

0.01% 99.99%

P(match|guilty) = 0.9999

or equivalently

Is that what we want to know?

The Prosecutors Fallacy
This trial is a ultimately a question of innocence and guilt.

So what we care about is:

A prosecutor at court presents evidence (i.e. the match) . They argue that the defendant is guilty because
the probability of finding the evidence given innocence  is small. But this is totally irrelevant. The
real question is what is the probability that the defendant is innocent given the evidence: .

The Prosecutors Fallacy
Using Bayes Rule:

So the assumption that  is only true if the probability of innocence  is equal to the
probability of seeing the evidence .

The probability of seeing the evidence here is important, because it includes all the ways of producing a
positive match:

So:

Anomaly detection
The last discussion that we will have in this section on conditional probability is regarding the difficulty of
anomaly detection: that is, why it’s difficult to reliably detect rare events.

There are many cases in Astronomy and Physics where anomaly detection is interesting/desirable.
Discovering new and rare phenomena is an obvious example, be they exotic particles in a detector or
exotic transients in the universe.

P(match|innocent) = 0.0001

P(innocent | match)


P(|)

P(|)

P(|) = P(|)P()
P()

P(|) ≈ P(|) P()
P()

P() = P(|)P() + P(| )P( )c c

= 0.0001 × + 0.9999 ×N − 1
N

1
N

≈ 0.00015

P(|) =
0.0001 × N−1

N

0.00014999
≈ 66.67%



Anomaly detection
When discussing accuracy of detection it is worth understanding the different types of result:

##          Compare         Reality.Positive        Reality.Negative
## 1  Measured-True            True Positive False Positive (Type I)
## 2 Measured-False False Negative (Type II)           True Negative

The “Types” are included because these names are sometimes used for specific types of failures.

The difficulty in anomaly detection arises because, as an event becomes rare, the accuracy of tests
required to minimise false positives (Type 1) becomes prohibitively large.

Let’s consider two examples: detecting a common event, and detecting a rare event, with an experiment of
fixed accuracy.

A common event
A decay process occurs in nature with probability . You have an experiment that detects this emission
with a probability of , and produces a false positive with probability . What is the conditional
probability that you witness a true decay and the experiment produces a positive detection?

##              Compare True.Decay No.Decay
## 1 Positive Detection        0.6      0.1
## 2 Negative Detection        0.4      0.9

Let  be the event that a true decay occurs, and  be the event that the experiment produces a positive
detection.

So your experiment only has to be approximately accurate to produce reliable detections when the event it
common.

A rare event
Let’s now consider a similar scenario, except the probability of our decay occurring in nature is very small: 

. The experiment, though, has improved to  accuracy, and only  false-positive
rate.

##              Compare True.Decay No.Decay
## 1 Positive Detection      0.999     0.01
## 2 Negative Detection      0.001     0.99

0.4
0.6 0.1

d 

P(d|) = P(|d)P(d)
P()

= P(|d)P(d)
P(|d)P(d) + P(| )P( )dc dc

= 0.6 × 0.4
0.6 × 0.4 + 0.1 × 0.6

= 0.8

P(d) = 0.001 99.9% 1%

Again we compute our probability that we actually detected the event:

So despite our experiment becoming much much more accurate, the probability that we make a true
detection is less than 10%. Said differently,  out of every  detections will be false.

Classical Inference
During the course so far, we have frequently described the concept of extracting information about a
“population”  from a “sample” of observations drawn from that population.

This process is called statistical inference, and until this point we have been interested in “Classical
Inference”.

A Collider Problem
Let’s take an example. A scientist wants to know (or rather estimate) the production rate of a particular
exotic particle across a range of interactions.

It’s not possible to run all possible interaction combinations, so they instead run a sample of  interactions
as their test.

If  is true fraction of interactions that lead to a particle emission, then each interaction in the sample ,
independent of all others, will be produce a particle with probability .

A Collider Problem
Let  be the random variable corresponding to the number of particles of interest produced by the the
sample of  interactions.

The scientist will therefore use  to draw some inference about the true underlying population
parameter .

Such an inference could be of the form of:

a point estimate: 
a confidence interval:  at  confidence
a hypothesis test: reject the hypothesis that  at the  significance level
a prediction: predict that  of future tests will produce the particle
a decision: that this field of study isn’t worth persuing

A Collider Problem

P(d|) = P(|d)P(d)
P()

= P(|d)P(d)
P(|d)P(d) + P(| )P( )dc dc

= 0.999 × 0.001
0.999 × 0.001 + 0.01 × 0.999

= 0.09

10 11

Ω

n

θ n
θ

X
n

X = x
θ

= 0.1θ ̂
θ ∈ [0.08, 0.12] 95%

θ < 0.07 5%
15%



Generally speaking, such inference will be made by specifying some probability model:

which determines the probability of observing  given a particular value of .

In our collider example, we have two possible outcomes per test (particle is produced or not produced). So
the appropriate probability model is the binomial function:

A Collider Problem
One method of estimating the value of  is to maximise the likelihood of  with respect to .

In the simplest terms we are finding the value of  that is most likely to produce the observed value of 
. In this case, we have the maximum likelihood estimate of .

A Collider Problem
Let’s say we observe  given . Every interaction produces our particle.

Given the binomial function:

So the maximum likelihood is , and that is our best estimate of the value of .

In this case, the parameter  is being treated as a constant. This is the cornerstone of classical statistical
theory.

Bayesian Inference
The fundamental difference between Classical and Bayesian statistics is that:

in Bayesian statistical inference,  is treated as a random quantity.

This means that inference can be made by analysing probabilities alone.

Bayes Rule

p(x|θ)

X = x θ

X|θ ∼ Bin(n, θ)

θ X = x θ

θ
X = x θ

x = 10 n = 10

Bin(n = 10, θ = 0.0)
Bin(n = 10, θ = 0.1)
Bin(n = 10, θ = 0.2)
Bin(n = 10, θ = 0.3)
Bin(n = 10, θ = 0.4)
Bin(n = 10, θ = 0.5)
Bin(n = 10, θ = 0.6)
Bin(n = 10, θ = 0.7)
Bin(n = 10, θ = 0.8)
Bin(n = 10, θ = 0.9)
Bin(n = 10, θ = 1.0)

= 0.00%
= 0.00%
= 0.00%
= 0.00%
= 0.01%
= 0.10%
= 0.60%
= 2.82%
= 10.74%
= 34.87%
= 100.00%

θ = 1 θ

θ

θ

Bayesian Inference is based on the concept of the posterior probability distribution:

We obtain the posterior probability distribution via Bayes Rule, which we have already seen during our
discussion of conditional probability:

where the denominator in this equation:

is the probability of observing the data , is independent of  for a fixed , and can be considered a
constant.

Most Importantly: The Prior

 is the prior probability distribution, which represents the beliefs that we have about the possible
values of  prior to observing any information (i.e. from the data).

When trying to estimate , we almost always have some prior knowledge, or belief, about the value of 
before taking any data into consideration.

Our Binomial example

with , .

We saw already that classical statistics says that best estimate of  here in .

The maximum likelihood of  in the classical inference sense is .

Do you think that this is reasonable?

Back to the start…
We had three scenarios that we considered. They were:

p(θ|x)

p(θ|x) = ,p(x|θ)p(θ)
p(x)

p(x) = ∫ p(θ)p(x|θ)dθ

x θ x

p(θ|x) = ,p(x|θ)p(θ)
p(x)

p(θ)
θ

θ θ

X|θ ∼ Bin(n = 10, p = θ)

n = 10 x = 10
θ 1

p(x|θ) θ = 1



The Drunken Coin Toss: A drunk friend correctly predicts the outcome
of  tosses of a fair coin.
The Wine Critic: Another friend correctly picks the origin of the wine 
times in a row.
The Classical Pianist: Another friend correctly identifies a classical
composer  times in a row.

The classical interpretation
Each of these scenarios presents the same binomial experiment, with the same outcome:

 and .

Based on these data alone, we would be forced to draw the same conclusion in each case; .

However our prior beliefs are likely to be somewhat at odds with this result. In classical inference this is of
no consequence, however in Bayesian inference this can have a significant influence over our
conclusions…

Prior Belief
The values that you wrote down prior to seeing the data represents your prior on  in each of the three
scenarios.

Look back on your priors now. How do they compare with mine?

Perhaps you’re much more open to the possibility that your friend can
actually see into the future?
Or perhaps you have no idea about wine, and so had no idea if it was
hard or difficult to tell the difference between bottles from France and
Spain?

Importantly, there are no wrong answers. The graphs you’ve drawn are your prior belief.

Opinions about the results
After we observed the data, I asked you to write down a probability that you thought each person was
telling the truth.

For my results:

10
10

10

X|θ ∼ Bin(10, θ) x = 10
θ = 1

θ

my opinion of the fortune teller is unchanged .;
my opinion about the wine-drinker has flipped: I now believe that there’s
a high chance that he’s telling the truth. ;
for the classical pianist, the observations of the data have further
hardened my belief that she is telling the truth: .

Bayesian Inference and the Prior
What we’ve just drawn on the last slide (and on your own pages) is essentially your prior belief on the
outcome of the challenge, and the resulting posterior probability distribution after observing the data.

This is the important part:
Every one of you was presented with the same data.

However you all will have different priors. This means that you will all
have different posterior distributions too.

The essential basis of Bayesian inference is that experiments are not abstract devices. Invariably we have
some knowledge about the process being investigated before we observe any data, and Bayesian
statistics provides us with a mechanism for drawing inference from this combination of prior knowledge
and data.

Characteristics of Bayesian Statistics
There are four fundamental aspects of the the Bayesian approach to statistical inference.

Prior Information
Subjective Probability
Self-consistency
no “ad-hoc”-ery

Characteristics of Bayesian Statistics
Prior Information
All problems are unique to having their own context.

That context derives prior information, and it is the formulation and exploitation of this prior knowledge
that sets Bayesian statistics apart from Classical statistics.

P(truth|success) ≈ 0

P(truth|success) = 0.8

P(truth|success) ≈ 1



Subjective Probability
Bayesian Statistics formalises explicitly the notion that all probabilities are subjective; based on an
individuals prior knowledge and the knowledge at hand.

Characteristics of Bayesian Statistics
Self-consistency
By treating  as a random variable, it emerges that the whole development of Bayesian inference stems
from probability theory only.

This means that all statistical inference issues can be addressed as probability statements about , which
we can derive directly from the posterior distribution.

No “adhockery”
Bayesian inference side-steps the tendency (in classical statistics and inference) to invent ad-hoc criteria
for judging and comparing estimators (point estimates, confidence intervals, etc).

This is done by relying on the posterior distribution itself to express (in straightforward probabilistic terms)
the entire inference about an unknown .

Review of Bayes Theorem (I)
In its basic form, Bayes Theorem is a simple result of conditional probabilities. Indeed, this is how we first
came to discover it a few of lectures ago.

If  and  are two events with , then:

The use of Bayes Theorem in probability applications is to reverse the conditioning of events. That is, to
show how the probability of  is related to .

Review of Bayes Theorem (I)
A slight extension of Bayes Theorem is obtained by conditioning events , which partition the
sample space  so that  if , and .

In this circumstance the computation of Bayes Theorem becomes:

This formulation is useful because it allows us to consider simple experiments in order to explore the
details of Bayes Theorem.

θ

θ

θ

A B P(A) > 0

P(B|A) = P(A|B)P(B)
P(A)

B|A A|B

, … ,C1 Ck
Ω ∩ = 0Ci Cj i ≠ j ∪ ∪ ⋯ ∪ = ΩC1 C2 Ck

P( |A) = ∀ i = 1, … , kCi
P(A| )P( )Ci Ci

P(A| )P( )∑k
j=0 Cj Cj

Return of the Urn
Consider an urn that contains six balls of unknown colours.

Three balls are drawn at random without replacement, and all are found to be black.

What is the probability that there are no black balls left in the urn?

Return of the Urn
Let  be the event that  black balls are drawn from the urn, and  be the event that there are truly 
black balls in the urn.

By Bayes Theorem:

The probability  is simple to calculate:

However the crucial issue is this:

What values do we assign to .

Remember that these are our prior beliefs about there being  black balls in the bag prior to seeing any
data.

Return of the Urn
Without any additional information, we might logically assume that all outcomes are equally likely:

where  (because there are 7 possible outcomes; ).

Using this prior:

So the data have updated our prior belief from  to . Put in words, the event that
there is only  black balls in the Urn is much less likely having seen the data than we believed it to be
previously.

A 3 Ci i

P( |A) =C3
P(A| )P( )C3 C3

P(A| )P( )∑6
j=0 Cj Cj

P(A| )C3

P(A| ) = × ×C3
3
6

2
5

1
4

P( ), … , P( )C0 C6

i

P( ) =Ci
1
k

k = 7 , , … ,C0 C1 C6

P( |A) =C3

=

P(A| )P( )C3 C3

P(A| )P( )∑6
j=0 Cj Cj

( × × ) ×3
6

2
5

1
4

1
7

× [0 + 0 + 0 + ( × × ) + ( × × ) + ( × × ) + 1]1
7

3
6

2
5

1
4

4
6

3
5

2
4

5
6

4
5

3
4

= 1
35

P( ) =C3
1
7 P( |A) =C3

1
35

3



Review of Bayes Theorem (II)
Stated in terms of random variables (with probability densities generally denoted by ) Bayes Theorem
then takes the form:

As per normal, when  is a continuous random variable  will represent the probability density function
(pdf) of , whereas when  is a discrete random variable  will refer to the probability mass function (pmf)
of .

Similarly,  can be continuous or discrete, but in the discrete case the integral in the denominator
becomes the summation that we’ve already encountered:

Note that the denominator of Bayes Theorem marginalises over  (and so is only a function of ). Therefore
for fixed data, Bayes Theorem can be rewritten as the proportionality:

That is, the posterior probability is proportional to the prior probability times the likelihood .

Bayesian Updating
There are  key steps in the Bayesian approach:

1. Specification of the likelihood model ;
2. Determination of the prior ;
3. Calculation of the posterior distribution ; and
4. Draw inference from the posterior distribution.

Multi-parameter Models
For our purposes in the natural sciences, the examples that we’ve been using up until this point are not
particularly useful.

We have been looking largely at examples that analyse a single variable, such as the binomial coin-toss, a
Gaussian distribution with known variance, etc. However in practice all problems that we will encounter
will involve more than one variable.

This is where another aspect of Bayesian statistics is much more straight-forward than classical statistics.
For highly complex multi-parameter models, no new methods are required.

Multi-parameter Models
We now have a vector  of unknown parameters which we wish to make inference about.
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We specify a multivariate model prior distribution  for , and combine the likelihood  via Bayes
Theorem to obtain:

exactly as before.

We often want to draw conclusions about one or more parameters at the same time.

These marginal distributions can be obtained in a straight-forward manner using probability calculations
on the joint distributions.

Inference of Multi-Parameter Models
For example, the marginal distribution of  is obtained by integrating out all of the other components of 

.

Equivalently, we can use simulation to draw samples from the joint distribution and then look at the
parameters of interest (i.e. ignore the values of the other parameters).

Inference about multi-parameter models creates the following complications:

1. Prior Specification: priors are now multivariate distributions. This means that we need to express
dependencies between parameters as well, which is often complicated.

2. Computation: we now have even more complicated integrals to evaluate, which creates the
necessity for complex numerical techniques.

3. Interpretation: the structure of the posterior distribution may be highly complex, which causes
difficulties in interpretation.

Posterior Simulation, and Markov Chain
Monte Carlo
The arguably most popular/useful method of posterior interpretation is posterior simulation.

More than any other technique, Markov Chain Monte Carlo has been responsible for the current
resurgence of Bayesian Statistics in the natural sciences.

This is because MCMC allows us to estimate a vast array of Bayesian models with ease.

The idea of MCMC was first introduced as a method for the efficient simulation of energy levels of atoms in
crystalline lattices. It was subsequently adapted for broader use within statistics.

The concept of MCMC is as follows:

Suppose we have some arbitrary “target distribution” :
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If  is sufficiently complex that we are unable to sample from it directly, then an indirect method for
sampling from it is to construct a Markov Chain within a state space , whose “stationary distribution” is 

.

If we run the chain for long enough, simulated values from the chain can be treated as samples from the
target distribution, and used as a basis for summarising the important features of .

There is a lot of jargon above, but don’t fret. We will make this clear in the following slides.

The Markov Chain
What is a markov chain?

A sequence of random variables  is defined as a Markov Chain if it follows the conditional probability:

That is, it is a sequence of numbers that, given some current state, is independent of the past.

The probability of transition from state  to  is given by some transition probability.

Visualising the Markov Chain
You may already be familiar with the concept of the Markov chain, even if you don’t know it by that name
specifically.

This is because there is a special type of Markov Chain that is somewhat well known: the random walk.

A random walk is a Markov chain whereby the transition probability is uniform for the points immediately
adjacent to :

Visualising the Markov Chain
A “random walk” is therefore just a sequence of steps:
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Visualising the Markov Chain
Simplifying this code into a different (faster) implementation:

Visualising the Markov Chain
We can also run many of the Markov Chains from the same starting point:



Using this random walk, we can now explore the transition probability we discussed earlier:

Analytically, this probability requires us to sum over all possible values of .

Monte Carlo Simulation
Monte Carlo simulation refers to the generation of realisations (of data/models/steps/distributions) using
random draws from a probability distribution.

So: The MCMC process involves constructing a Markov Chain that generates Monte Carlo samples for an
arbitrary probability distribution.

Building an MCMC Sampler: The Gibbs
Sampler
The first MCMC sampler that we are going to look at is the Gibbs Sampler.

Consider a pair of variables , whose joint distribution is denoted by .

The Gibbs Sampler generates a sample from , i.e. the marginal density of  with respect to x, by
sampling (in turn) from the conditional distributions  and , which frequently known in
statistical models of complex data.

This is done by generating a “gibbs sequence” of random variables:

The initial value  is chosen arbitrarily, and all other values are found iteratively by generating values
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This is known as Gibbs Sampling.

It turns out that, under reasonably general conditions, the distribution of  converges to  as 
.

Said differently, provided  is large enough, the final observation of  is effectively a sample from .

The Gibbs Sampler: Algorithm
1. Initialise 
2. Simulate  from the conditional distributions of

3. Simulate  from the conditional distributions of

4. …
5. Iterate

Gibbs Demonstration: Bivariate Gaussian
Consider a single observation  from a bivariate normally distributed population with unknown mean 

 and known covariance matrix:

With a uniform prior distribution on , the posterior distribution is

Although we can sample from this directly, let’s pretend that we cannot.

To apply the Gibbs sampler we must first know the form of the conditional posterior distributions.

From the properties of the multivariate normal distribution these are:

Let’s set , and , and use the initial guess  (that is, we’re
running 4 distinct chains).
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Gibbs Demonstration: Bivariate Gaussian
Let’s start by plotting the first

 samples from each of our Gibbs sequences:

You can see our four starting guesses as the black circles, and the subsequent samples of the sequence.

Gibbs Demonstration: Bivariate Gaussian
Let’s now crank it up to many samples:

#Gibbs Sampler in R 
Gibbs<-function(start,n=1e3,rho=0.8) {
  #Initialise the variables 
  theta_1<-theta_2<-rep(NA,n)
  #Enter the initial guesses 
  theta_1[1]<-start[1]
  theta_2[1]<-start[2]
  #Loop over the next n steps
  for (i in 2:n) { 
    #Generate the sample for X
    theta_1[i]<-rnorm(1,rho*theta_2[i-1],sqrt(1-rho^2))
    theta_2[i]<-rnorm(1,rho*theta_1[i],sqrt(1-rho^2))
  }
  return(cbind(theta_1,theta_2))
}

15 Gibbs Demonstration: Bivariate Gaussian
With so many samples the individual points now become more useful to plot:


