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Course Outline
Section 1: Data Description
Section 2: Probability & Bayesian Statistics
Section 3: Optimisation, Complex Analysis, Machine Learning

Section 1: Data Description and Selection
Topics include:

Point & interval estimation
Correlation & covariance
Selection biases in an Astronomical Context

Section 2: Probability & Bayesian
Statistics
Topics include:

Fundamentals of probability
Statistical distributions and their origins
Frequentist & Bayesian statistics
Bayes theory
Prior specification
Hypothesis testing

Section 3: Optimisation, Complex



Modelling, and Machine Learning
Topics include:

Monte Carlo Simulation
Markov-Chain Monte Carlo
Fitting high dimensional data
Machine Learning

Learning Objectives for Today
Measures of Central Tendency and Dispersion
Understand the motivations, limitations, and useful properties of concepts such as:

Arithmetic Mean, Median, Mode
Mean Absolute Deviation, Mean Squared Error,
Variance, Standard deviation, Median Absolute Deviation from
Median

Understand the differences between various measures of central tendency, and when they are appropriate
to use.

Understand the differences between various measures of dispersion, and when they are appropriate to
use.

Selection Bias in Astronomy
Correlation & Covariance

Selection effects in astronomical surveys

Notation and Nomenclature
Let us start with some definitions and a description of the notation that we will use throughout this course:

An observation  is any individual measurement that we have made.
A sample  is any collection/set of individual measurements.
The number of observations in a sample is  (called ‘cardinality’ in set theory/notation).
A population  is the collection of all measurements.

Each observation  generally has one-or-more variable(s) associated with it (otherwise there was no
observation!), which we define using upper-case Roman letters ( ) or sometimes using subscripts on 

 (i.e. ) if there are many variables to consider.

The observations of each variable are lower-case; e.g.  are  observations of variable .
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If a variable is known to follow a particular probabilistic distribution (we’ll use this a lot later in the course),
then the variable is defined using a tilde (` ’).

Samples vs Populations
The distinction between a sample and a population is an important one.

In standard experimental physics and astronomy, we are almost never presented with a population,
because a population is the set of all measurements, in the most literal sense. Instead, we almost
exclusively work with samples of observations, which we use to infer the properties of the population.

This leads to another important notation distinction. When discussing the properties of populations and
samples, statisticians generally distinguish the former by using Greek letters, while the latter are given
Roman letters. For example, the population mean and standard deviation are generally given the symbols 

 and  respectively, whereas the sample mean and standard deviation are generally given the symbols 
and  respectively.

Finally, an estimator for an arbitrary true parameter (e.g. ) is denoted by placing a hat/caret over the
parameter (i.e. ).

Putting it all together
I make a sample  of  observations for a single variable  that is follows a normal (i.e. Gaussian)
distribution with population mean  and standard deviation .

We have  observations  from the population 

Variable  is drawn from a Normal , 
distribution

The values of
 for each observation
 are

With this sample of  observations we now want to do our science.

For this experiment, our science goal is simply to estimate the value of . We decide to define our estimate
of  as simply the mean of our observations of :

We compute the mean, submit the resulting estimate to Nature, and win a Nobel Prize. Great job everyone!

Measures of Central Tendency and
Dispersion
Frequently in data analysis we are interested in comparing the properties of different samples of data
across a range of variables.

In these circumstances it is generally advantageous to reduce distributions of data into one-point summary
statistics.
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Choice of which summary statistic to use, however, is often important.

Point Estimation: Arithmetic Mean
The natural starting point for a discussion on point estimates for an arbitrary variable is to discuss the
arithmetic mean:

This is the common “average” or “mean” with which we are all familiar.

Point Estimation: Median
The median is the point that divides a dataset into two equal parts.

For data with an odd number of observations, this is trivially the middle (that is, the ) entry of
the rank-ordered dataset. For even-numbered observations where there is no ‘middle’ value, the median is
generally defined to be the mean of the two middle values.

Point Estimation: Mode
The next frequently used point statistic is the mode, which is the most frequently observed data-point in
the variable.

For continuous data, the mode is frequently estimated using a discretized or smoothed representation of
the data, such as the KDE:

Dispersion Estimation
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In addition to just an estimate of the central tendency of data, we often also require an estimate of the data
dispersions/spread.

Different distributions can have the same central tendency;
When quantifying the possible range of a variable, a point estimate is obviously insufficient; and
Even if we do just want a point estimate, that estimate of the central tendency will always be
imperfect. Crucially, the uncertainty on it is intimately linked to the data dispersion.

Deviation
Dispersion is a measure of deviation from a particular point. So we can construct an arbitrary dispersion
metric as being, for example, the arithmetic mean of all deviations between the data and a point :

We can now run this dispersion metric for an arbitrary dataset:

## [1] "Summary of used sample:"
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.000376 0.274176 0.692038 0.977365 1.407133 7.391130 
## [1] "sd / MAD / 1-sig / 2-sig range:"
## [1] 0.9452439 0.7421323 0.8550172 1.6557027
## [1] "Using 1000 out of 1000"

So this dispersion measure looks sensible. Let’s try another dataset, which is Gaussian rather than
Exponential:

## [1] "Summary of used sample:"
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -2.96120 -0.68077 -0.02265 -0.01725  0.60716  3.78325 
## [1] "sd / MAD / 1-sig / 2-sig range:"
## [1] 0.9800429 0.9654444 1.0009272 1.9805356
## [1] "Using 1000 out of 1000"
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Absolute Deviation
To counter this effect we can instead use the absolute deviation:

This dispersion measure still carries with it the choice of . It is intuitive to define the dispersion with
respect to one of the point estimates that we’ve already discussed, such as the mean or median.

When we set our absolute deviation reference point to be the arithmetic mean of the distribution, ,
we recover the absolute mean deviation:

When we set reference point to the median , we recover the absolute median deviation:

Variance & Standard Deviation
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We can consider the arithmetic mean of the squares of the deviation, known as the mean squared error
(or MSE) with respect to our reference point :

When we set  to be the arithmetic mean , we recover the so-called variance of the sample.

The positive square root of the variance is called the sample standard deviation:

The sample variance and standard deviation are fundamental quantities in statistics.

It can be shown that the sample variance is not an unbiased estimate of the population variance. Rather,
an unbiased estimate of the population variance is:

Median Absolute Deviation from Median
As the standard deviation contains the arithmetic mean of the data, it can be sensitive to outlier values. As
such it is sometimes preferable to use a dispersion estimator that has less sensitivity to outliers, such as
the median absolute deviation from the median (or MAD):

The MAD estimate is not a simple replacement for the standard deviation, though, because the two
statistics aren’t equivalent:

## [1] 1.015025

## [1] 0.660692
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MAD(x) = median(| − |)xi x ̃0.5

#Generate some Gaussian data
x<-rnorm(1e3)
#Create our MAD function 
mad_disp<-function(x) {
  return(median(abs(x-median(x))))
}
sd(x); mad_disp(x); 



However, it can be shown that the difference between the MAD and true standard deviation (for normally
distributed data) is simply a multiplicative factor.

Therefore we can define the normalised MAD (or nMAD):

Useful Properties of Point and Dispersion
Estimates
When using point estimates as summaries of data, it is useful to understand some fundamental properties
of each statistic.

In each of the subcategories below we detail useful properties of each estimator, and important conceptual
details about them.

The Mean
Recall that, for an arbitrary dataset of variables , the mean is defined as:

Important Properties of the Mean
Scaling the data scales the mean:

Translating the data also translates the mean:

The sum of signed differences from the mean is zero:

The average squared distance between all data  and a single point 
is minimised at the mean:

nMAD(x) = 1.4826 × median(| − |).xi x ̃0.5
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Proof
We can prove that the mean minimises the mean square distance to all data by finding the minima of the
function:

so:

The Standard Deviation
Recall that, for an arbitrary dataset of variables , the sample standard deviation is
defined as:

The unbiased estimator of the population standard deviation is:

Important Properties of the Standard
Deviation

Translating the data does not change the standard deviation:
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Scaling the data scales the standard deviation:

For  observations of an arbitrary variable , whose standard deviation
is , there are at most  data points lying  or more standard
deviations away from the mean.

Assume we construct a length  dataset of variable  with  data that are  standard deviations from the
mean. The fraction of data beyond  standard deviations is . Furthermore, let’s assume 
(which is fine, because of the translation point above). Therefore:

Let’s now make our dataset as pathological as possible. To start, we’ll assign  data points to have 
, because these contribute  to the standard deviation. We’ll then place the other  elements at

exactly  standard deviations from 0; ,. For this very strange dataset, the standard deviation
becomes:

so:

As this was the most pathological dataset possible, we therefore conclude that for any dataset, the
maximal fraction of data that can sit  standard deviations away from the mean is .

For any dataset, there must be at least one data point more than one
standard deviation from the mean.

Given the formula for the standard deviation:
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std(y) ≡ =sy
1
n ∑

i=1

n
y2

i

‾ ‾‾‾‾‾‾‾

⎷


n − m
= 0y0 0 m

k | | = ky1 sy

sy = +1
n ∑

i=1

m
y2

1 ∑
i=m+1

n
y2

0

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

⎷


= mk2s2y

n

‾ ‾‾‾‾‾‾
√

= rk2s2y‾ ‾‾‾‾√

= rs2y k2s2y

∴ r = 1
k2

k r = k−2

s =
‾ ‾‾‾‾‾‾‾‾‾‾‾‾

⎷


where again we can generalise to an arbitrary dataset with :

So

The right hand side here is the sum of all squared deviations from the mean. However:

That is, the sum of all deviations must be less than or equal to  times the maximal squared deviation.
Therefore:

So there must be at least  data value that is greater than or equal to the standard deviation.

Comment: Usefulness of the variance
If

then

## [1] 5.002786

The Median
Recall that, for an arbitrary dataset of variables , the median is defined as:

Important Properties of the Median
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Scaling the data scales the median:

Translating the data also translates the median:

The nMAD
Recall that, for an arbitrary dataset of variables , the normalised median absolute
deviation from median (nMAD) is defined as:

Important Properties of the nMAD
Translating the data does not change the nMAD:

Scaling the data scales the nMAD:

Comparing the statistics
How do these different statistics compare? What makes one more useful than another for a particular
dataset?

Central Tendency
The primary pitfall with measures of central tendency come from the presence of outlier data. Given that
the mean minimises the average distance to all data, the presence of outliers in a dataset can
catastrophically bias the statistic.

Consider the case of galaxy images contaminated by satellite trails.

med(kx) = k × med(x)

med(x + c) = med(x) + c

x = , , … ,x1 x2 xn

nMAD(x) = 1.4826 × med(| − |)xi x ̃0.5 .

nMAD(x + C) = nMAD(x)

nMAD(kx) = k × nMAD(x)

If we compute the point statistics of central tendency for this dataset:

## [1] 14.26484

## [1] 7.058896

The presence of the satellite contamination completely ruins our mean estimate of the galaxy fluxes.
However, the median statistic doesn’t fall into the same trap.

Dispersion
The story gets even worse when we want to calculate the dispersion statistics:

## [1] 34.37872

## [1] 1.563354

## [1] 2.102616

The catastrophic failure of the standard deviation here is a combination of the inclusion of the problematic
mean estimate and the requirement that standard deviations have few data-points at many standard
deviations from the mean.

#Dispersion for gals 
sd(gals_second); mad(gals_second); IQR(gals_second)

r ≤ 1



Recall our formula for the fraction of data that can reside  standard deviations from the mean: . In
this dataset, the outliers make up 4.31  of the dataset. Therefore, they can reside at most 4.82 standard
deviations from the mean.

In reality, though, the outliers here aren’t drawn from the same Gaussian distribution as the rest of the data,
and in truth reside 112.67 standard deviations from the mean.

Crucially, the nMAD statistic is robust to the outliers, as it uses median statistics in its computation.

Comparing multiple datasets
Archive imaging of the same galaxy population exists, and was taken 15 years prior to our contaminated
imaging. Satellites were less common then, and none of the images were affected. But the image quality is
generally worse.

The Archive results are below.

The results of these two surveys, ignoring the outliers, are identical. However if we were to summarise
these data only using mean statistics…

## [1] 6.989466

## [1] 14.26484

…then we would be forced to draw the conclusion that the samples have physically brightened by a factor
of two between the two observations!

k r ≤ 1
k2

%

#Central Tendency statistics for two gals studies
mean(gals_first); mean(gals_second);

Summarising relationships in 2D
Until now, we have essentially explored datasets with only one variable (and how to compare different sets
of observations of this one variable).

We now want to extend our analysis to datasets that contain two (or more) variables.

When provided with datasets containing multiple dimensions, we are frequently interested in determining
relationships between variables.



There is a clear relationship between the duration of the eruption and the time until the next eruption. This
relationship may have an underlying physical cause that we are interested in, or it may be coincidental.
Determining the relationship between variables, and their significance, is therefore an important topic in
statistics.

Covariance and Correlation
We’ve previously explored the concept of variance and standard deviation. For a single variable, recall that
the variance was defined as:

= ( −
n

i
2

The covariance of two variables is then defined as the joint variance between each variable:

We will discuss the covariance formula more later in the course, but for now you can see that the definition
formally makes sense if you compute the covariance of a variable with itself:

The covariance of two variables describes the degree of joint variation that exists between two variables.

For our “faithful” dataset, we find that the covariance is 13.9778078. This value, though, is dependent on
the absolute dispersion of the dataset.

That is, if we were to convert the faithful dataset into standard coordinates, the covariance changes:
0.9008112.

Pearson Correlation
It is therefore often useful to compute the amount of correlation between variables, that is invariate under
scaling of the variables. For this we can compute the so-called Pearson correlation coefficient:

The correlation coefficient varies between  (for perfectly negatively correlated data), and  (for perfectly
positively correlated data). For our faithful dataset, we have:

## [1] 0.9008112

## [1] 0.9008112

The covariance and correlation values are useful for computing the relationships between any two
variables.
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#Compute ourselves 
with(faithful,
  cov(eruptions,waiting)/(sd(eruptions)*sd(waiting))
)

#Use the internal function 
cor(faithful$eruptions, faithful$waiting)



Covariance & Correlation Matricies
For datasets with two or more variables, the covariance can be computed for all combinations of different
variable combinations, to create the covariance matrix and correlation matrix:

Covariance & Correlation Matricies
We can compute these matrices for our faithful dataset:

##           eruptions   waiting
## eruptions  1.302728  13.97781
## waiting   13.977808 184.82331

##           eruptions   waiting
## eruptions 1.0000000 0.9008112
## waiting   0.9008112 1.0000000

Pearson correlation, however, should be used with caution. For linear data, the coefficient is sensible.
However for strongly non-linear data the coefficient is less interpretable:
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cov(faithful); cor(faithful)

Spearman Correlation
There are other correlation formalisms that attempt to circumvent the problems of the Pearson correlation
coefficient is to utilise an associated measure called the Spearman Rank Correlation.

The Spearman Rank Correlation is defined as the Pearson correlation between the rank-orders of the
variables.

As a demonstration, we’ll construct a dataset with one non-linear variable, but which is exactly correlated
to another (in the intuitive sense: knowing one perfectly informs the other).

##           X         Y
## X 1.0000000 0.7647762
## Y 0.7647762 1.0000000



So Pearson tells us that the variables are correlated at the  level, while a quick look at our figure
shows us that this is clearly an underestimate.

If we compute the pearson correlation of the rank-ordered variables, though:

## [1] 1

This makes sense intuitively, because the function  is monotonically increasing and perfectly correlated
to  (albeit non-linearly). This is the Spearman Rank correlation:

##   X Y
## X 1 1
## Y 1 1

Let’s now see if the Spearman correlation can recover the correlation of one of our We can now look at one
of the strange Pearson results from our figure:

##               X             Y
## X  1.0000000000 -0.0001742265
## Y -0.0001742265  1.0000000000

##             X           Y
## X 1.000000000 0.001351952
## Y 0.001351952 1.000000000

Notice that the rank correlation is unable to recover the correlation between non-monotonically increasing
variables!

In this way, the correlation coefficients are describing the joint information between two variables.

∼ 70%

Y
X

Interpretting Correlation
For parts of this lecture we’re going to work with various simulated toy universes that I have constructed.

Galaxies in the first toy universe are simple and easy to model, the universe is a perfect expanding lattice,
and telescopes and detectors have infinite sensitivity

“Theorist_Universe_1”

To start our exploration into my mock universe, we’re going to look at the distribution of galaxies in my
universe.

Galaxies are observed with telescopes and fluxes are measured in various filters. We use these fluxes to
measure galaxy redshifts and galaxy properties using “Spectral Energy Distribution” modelling.



Galaxies have a number of physical parameters estimated, and a number of additional properties are
included (e.g. environment).

Correlation 1: Relationships between
parameters

If one parameter is related to another, we are generally interested in determining if that relationship is
causal.

A sneak peak at probability
Let’s say that in our toy universe we have a catalogue of  galaxies, with  properties measured for
each galaxy. We decide a relationship is worth investigating if it contains an  correlation or more.

What fraction of our properties do we expect to have a correlation of  or more, assuming that the data
are all truly random?

## 0.64 % of variables have 80% correlation or more

Said differently, there is a 1 in 156 chance that two totally random variables in our survey will have an
absolute correlation of  or higher.

What does this mean?

10 200
80%

80%

0.8



The likelihood of finding “significant” correlations between truly random data is non-zero, and grows with
decreasing numbers of observations and increasing numbers of observed variables.

Working with small samples does not mean you can ignore statistics

Making matters worse
The problem is further complicated by the existence of confounding variables.

A confounding variable is one that acts upon both the dependent and independent variables in a
measurement of correlation, and thereby creates a spurious correlation between the two.

We’ve created two variables that correlate with . But what if we never actually observed the variable …
We would instead plot  and :

## [1] -0.9645978

And be tempted to decide that there is a causal relationship between these two parameters, when in fact
none exists.

A fundamental distinction

Z Z
X Y



This is an example of a spurious correlation. Such correlations are possible (and indeed likely!) when you
have few observations of many variables (more on this later).

If you only remeber one thing from this
lecture…

Correlation does not equal
Causation!

Correlation 2: Noise & Detection Effects
Correlation plays a significant role in astronomical research in particular due to correlated noise.

This is an image taken in our “Theorist_Universe_1”.

Let’s now assume that we don’t have perfect detectors, but ones that produce perfectly Gaussian noise

“Theorist Universe 2: Equally Implausible Boogaloo”



Correlation 2: Noise & Detection Effects
We can make this more complex by adding in:

realistic galaxy distributions & blending

realistic blending of sources below the detection limit



realistic correlations in the noise profile Correlation 2: Noise & Detection Effects
This final product is not dissimilar to actual data:



 

Detection Effects & Bias
Using our simulated universe, that looks very much like reality, let’s look at the distribution of intrinsic
galaxy brightness vs the age of the universe:

This correlation suggests that galaxies were, on the whole, brighter at earlier times in the universe, and that
they are dimming over time.

Detection Bias
Now let’s plot the relationship between observed brightness and distance:



There is a clear relationship between these two properties, and an obvious (artificial) cut-off in the
distribution of apparent brightness at .

This cut-off is the magnitude limit of our toy survey.

What influence does the magnitude limit of our survey have on the distribution of intrinsic brightness?

Malmquist Bias

This is an observational bias called “Malmquist Bias”.

m = 25

This effect means that galaxy properties, measured as a function of redshift or in wide chunks of redshift,
must account for the changing galaxy population.

Malmquist Bias
A common place that Malmquist bias occurs is in the modelling of galaxy distribution functions, such as
the galaxy stellar mass function (GMSF) or galaxy Luminosity function (GLF). Failing to account for
Malmquist bias in these measurements leads to catastrophic errors:



Survivor Bias
The general term for a bias that originates because a studies sample is not representative of the general
population because of some selection effect is known as survivor bias (in the sense that the remaining
sample has “survived” some test).

In real astronomical survey imaging, survivor biases are caused by much more than simple magnitude
selections (although the magnitude limit is often the most dominant selection). A good example of this is
the bivariate brightness distribution:

The BBD showcases the 4 major selection effects that impact survey images in astronomy:



The particular problem with these selections is that we know galaxies exist outside these limits, because
we have (often by accident) discovered them.

Non-Astronomy Aside: The original
“survivor bias”
The name originates from the studies of military aircraft during the dawn of airborne warfare. In an effort to
protect aircraft from destruction, the planes ought to be shielded with armour.

Military analysts noted that planes were generally most heavily damaged on their wings and tails when
they returned from battle. And so they decided that it was necessary to fortify these areas. However
armour is heavy, and reduces the efficiency of the aircraft. So they contracted statistician Abraham Wald to
optimise the placement of armour on the aircraft.



Wald returned to the analysts with a recommendation that was somewhat unexpected: Armour the parts of
the plane that don’t have any bullet holes.

The reason was simple: bullet’s do not preferentially strike wings and tails. They should be randomly
distributed over the fuselage, but they are not.

Therefore, there must be some selection effect that means planes with bullet holes on the wings and tails
preferentially return home. Why? Because planes that get shot in the engine crash!

More Biases in Imaging: More Noise, Mo’
problems

1. All observational data has uncertainties, because no instrument is
perfect.

2. All models have uncertainties, because no model looks exactly like the
real universe.

3. Ergo: you will always be working with uncertain quantities.

Noise effects
Back to the toy universe: our observed galaxies have some distribution of “true” stellar mass (now
corrected for Malmquist Bias!):

## Warning in xy.coords(x, y, xlabel, ylabel, log): 8 y values <= 0 omitted from l
ogarithmic plot

What happens if we add a small amount of noise to our estimated stellar masses?

## Warning in xy.coords(x, y, xlabel, ylabel, log): 8 y values <= 0 omitted from l
ogarithmic plot



Eddington Bias
This effect known as “Eddington Bias”, and is most apparent when modelling a property that follows a
simple power law distribution, and a constant Gaussian uncertainty on the parameter:

## Warning in samp + rnorm(length(ind), sd = 8): longer object length is not a mul
tiple of shorter
## object length

It is caused by the distribution of sources being highly asymmetric. You can think of this probabilistically:

The probability that any one source scatters by  is very small.
At any one point on the x-axis, there are more sources to the left than the right
Ergo: there is a greater absolute chance that sources from the left will scatter rightward, than vice

±10

versa.

Statistical Biases & Astronomical Analyses
Failing to understand the properties of the statistics that are used in an analysis, or how to interpret
correlations, or how to account for selection effects, or how to account for noise, will all lead to errors in an
analysis.

But: simply being aware of these effects already puts you at an advantage. Great Job!


